
Target: Ulead PhotoImpact 6.0 trial
URL: http://www.ulead.com
Protection type: ... expires after 30 days
Tools required:
 a disassembler (Win32Dasm v8.9 -> recommendet)
 a hexeditor of your choice (I prefer UltraEdit)
 a C++ compiler (to compile the patch)

Sometimes I wonder about the high vulnerability of software protections. In many
cases it's really just a matter of changing obvious sets of instructions. Ok, have
you arranged all those things? Excellent, let's start:

Install the program and run it. A Dirty nag-screen will pop up and inform you
courteously that you have 30 days of the trial period left until the program will
commit suicide and occupy precious memory on your machine without any productiveness.
Ok, so what you probably want to achieve is to be able to run the program again, this
time perhaps without the dirty nag-screen and most important without time limit. The
next step is to push up your system clock so that the software won't run again. So
push it up 2 months to be sure the time limit has been bypassed. Now try to run the
program! As expected it won't. The boring nag-screen appears and states something
like: "Your 30-day trial period for PhotoImpact 6 has expired...".

Now launch Win32Dasm, load the main executable and look at the modules imported.
Especially look at the Name: section. Pay attention in which modules there is a
possible reference to Registration in any form. As the most attractive you'll
probably find u32Cfg.dll. In some cases you'll need to browse several dynamic link
libraries in order to find the right one. You will find information like this in the
address references:

Addr.80000012 hint(0012) Name: ulcDispReg
Addr.80000011 gubt(0011) Name: ulcProductKeyName
...etc.

Ok, close the current disassembled and start disassembling u32Cfg.dll. The next step
to do is to search the code after the message got before "Your 30-day trial..." in
the String data references. When found double click the string reference. You will be
pushed at that location. There are two such locations, but in this case only one is
interesting for us, namely the last one, placed towards the end of file. Here is the
code:

Referenced by a (U)nconditional or (C)onditional Jump at Addresses:
|:4EB06F55(C), :4EB06F65(C), :4EB06FEB(C), :4EB06FFC(C)
:4EB07053 8D442438 lea eax, dword ptr [esp+38]
:4EB07057 50 push eax
:4EB07058 6808040000 push 00000408
:4EB0705D E89ECAFFFF call 4EB03B00
:4EB07062 83C408 add esp, 00000008
:4EB07065 85C0 test eax, eax
:4EB07067 7515 jne 4EB0707E
:4EB07069 896C2438 mov dword ptr [esp+38], ebp

Referenced by a (U)nconditional or (C)onditional Jump at Address:
|:4EB07082(C)
:4EB0706D 8B4C2428 mov ecx, dword ptr [esp+28]
:4EB07071 51 push ecx
:4EB07072 6A10 push 00000010

Possible Reference to String Resource ID=22006: "The %d-day trial period has expired.
Please update to the fu"
:4EB07074 68F6550000 push 000055F6
:4EB07079 E964010000 jmp 4EB071E2

Referenced by a (U)nconditional or (C)onditional Jump at Address:
|:4EB07067(C)
:4EB0707E 396C2438 cmp dword ptr [esp+38], ebp
:4EB07082 74E9 je 4EB0706D
:4EB07084 E8A7E0FFFF call 4EB05130
:4EB07089 3D33010000 cmp eax, 00000133

:4EB0708E 0F8556010000 jne 4EB071EA
:4EB07094 8B1570B0B04E mov edx, dword ptr [4EB0B070]
:4EB0709A 8D4C2464 lea ecx, dword ptr [esp+64]
:4EB0709E 6804010000 push 00000104
:4EB070A3 51 push ecx
:4EB070A4 52 push edx

Note that this snippet of code is referenced by several conditional/unconditional
jumps. The conditional jump at 4EB07082 is just a jump back to the preview message.
So look at the other ones. There you will find some compare functions followed by a
je:

test eax, eax
je 4EB07053

All four conditional jumps will throw the program to the beginning of the dirty nag-
screen code. So our intention is to change it in a way to reverse this process. We'll
change all 4 conditional jumps to jne -> jump if not equal. I'll show you later how
to fix this. Ah, sorry, I forgot to advise you to sign up the address offsets of
those location... done? Ok.

[VERY IMPORTANT] The first thing to do before you go ahead and do some byte
manipulation is to make a copy of the file (u32Cfg.dll), since a minimal error would
cause the program not to be able to run anymore.

Ok, now we will go ahead and patch the program to see if the work done was effective.
Launch your favorite hex-editor and load our target. Now go to every single offset of
the addresses noted above and change the bytes in a way to change the value to the
opposite instruction.
This are the relative opcodes of the two instructions:
je = 84 or 74
jne = 85 or 75

After having changed the bytes, save the program. Some programs do not allow byte
modifications. In this case save the hex file with the modified one and launch the
program. Ok. Now replace the original u32Cfg.dll with the modified one and launch the
program. The classic nag-screen will appear, but this time it allows you to run the
program anyway. Wahyyyyaahhh. CRAcKKKKKKED!!!!!!!!!!!!!!!!

There is of course also a way to eliminate that fucking nag-screen, but I'd say, just
to force your brain thinking ;-), try it on your own. I'll publish the modified
tutorial in somes. However the patch code below does already contain the patch
to kill the nag-screen - just check the locations and try to get affiliate with the
program flow.

Ok, now that we discovered the protection hole in the program, you're probably
willing to make a patch (a small executable to distribute around) in order to crack
the software.
Ok, we'll use DOS file-comparison utility to compare the just modified u32Cfg.dll
with the original one. Rename the modified u32Cfg.dll to u32Cfg.crk and copy it to
the location where you stored the original one. Type in a DOS console:

FC /B u32Cfg.crk u32Cfg.dll > u32Cfg.dif

Open the just created file (u32Cfg.dif) in a text editor and you'll see this:

Confronto in corso dei file u32Cfg.crk e U32CFG.DLL (italian OS ;-))
00006F56: 85 84

00006F66: 85 84
00006FEB: 74 75
00006FFC: 75 74

The first column of bytes are the modified ones, the second the original ones. Now
I'll show you how to write a very simple patch for that program. Probably it's not
the way a pro would, but it will do it anyway. There are of course a lot of software
programs available to simplify the process of creating a patch, but in my opinion the
satisfaction is much greater in coding the own patches.

(choosen language C++):

#include <fcntl.h>
#include <fstream.h>
#include <stdio.h>
#include <string.h>

int main(int argc, char **argv)
{

FILE *fp;

printf("\n");
printf("ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿\n");
printf("³ PhotoImpact6.0 Crack, Written by Rusty! ³\n");
printf("³ (Get the tutorial) ³\n");
printf("ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ\n");

fp=fopen("u32Cfg.dll","r+");

if(fp==NULL)
{
cout << " ß Could not open file for patching...\n\n";
return 1;
}

// Patch our locations //
fseek(fp,0x6CF8,SEEK_SET); // seek to location //
fputc(0x85,fp); // patch bytes //

fseek(fp,0x6FFC,SEEK_SET); // seek to location //
fputc(0x75,fp); // patch bytes //

fseek(fp,0x6FEB,SEEK_SET); // seek to location //
fputc(0x74,fp); // patch bytes //

fseek(fp,0x6F66,SEEK_SET); // seek to location //
fputc(0x85,fp); // patch bytes //

fseek(fp,0x6F56,SEEK_SET); // seek to location //
fputc(0x85,fp); // patch bytes //

fclose(fp);
printf(" ß Finished Patching!\n");
return 0;
}

Compile this code and voila! We have created a patch to force the software program to
run beyond the time limit.

THE CODE below is a much more stable method of creating a patch, you just have to
change the offsets and the bytes. Have fun, and remember to check my site for coming
tutorials. Bye.

Rusty
rusty79@totalmail.com

-----------------------.......-----------.......-.-.-.---.--.--.--.---------------------------

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define BANNER "www.rusty79.da.ru"
#define HEADER "PhotoImpact6.0 CRAck"
#define AUTHOR " ---- Buy the program if you really like it ----"
#define FILENAME "u32Cfg.dll"

#define OPENTYPE "r+"
#define HI(x) (x >> 8)
#define LO(x) (x & 0x00FF)
#define MAXBYTESPERCRACK 8
#define BYTE unsigned char
#define ULONG unsigned long

/* crkLen indicates the number of differant offsets to make changes to */
#define crkLen 2

/* I usually paste the diffs from a fc /b <Orig> <Patched> Here.
0000231B: 74 90 See.. this is the first location
0000231C: 03 90 2 bytes long...
00005977: 74 90 and this is the second location
00005978: 03 90 also 2 bytes long...
*/

/* the list of offsets to start patching the file at (count should match crkLen)
*/
ULONG crkOfs[crkLen] =
{
0x0000231B,
0x00005977
};
/* crkTbl first states the bytes to change at the given location
** followed by a list of 0xBefore|After byte sets...
** for instance.. there are 2 differant offsets (as shown in crkOfs, above)
** of which both have 2 bytes to change.. for the first location the
** patch will look for 7403 and replace it with 9090....
*/

ULONG crkTbl[crkLen][MAXBYTESPERCRACK] =
{
{2, 0x7490, 0x0390},
{2, 0x7490, 0x0390}
};
main(int argc, char *argv[])
{
BYTE inbuf[MAXBYTESPERCRACK], inchar, bSame, patchbyte;
FILE *fp;
int bts, Ix, Jx;
ULONG fOffset;
long io_num;
int result, numread, dupchars, alreadpatched;

/*---*/
/* print out the Header and the Author lines */
/*---*/
printf("%s\n%s\n%s\n", BANNER, HEADER, AUTHOR);
/*---*/
/* Open the File */

/*---*/
if((fp = fopen(FILENAME, OPENTYPE)) == NULL)
{
printf("Cannot open %s. Please move %s to the directory containing %s. Exiting.\n", FILENAME,
argv[0], FILENAME);
return(0);
}
/*---*/
/* Verify the patch data */
/*---*/
bSame = 1;
alreadpatched = 0;
for (Ix = 0; Ix < crkLen; Ix++)
{
/* Go to the spot */
fOffset = crkOfs[Ix];
result = fseek(fp, fOffset, SEEK_SET);
if(result)
{
printf("Error Seeking in File.(s)\n");
fclose(fp);
return(0);
}
/* Read the signature buffer */
bts = (int) crkTbl[Ix][0];
dupchars = 0;
numread = fread(inbuf, sizeof(char), bts, fp);
for (Jx = 0; Jx < bts; Jx++)
{
inchar = inbuf[Jx];
patchbyte = (BYTE) HI(crkTbl[Ix][Jx+1]);
if (patchbyte != inchar)
{
if (inchar == ((BYTE) LO(crkTbl[Ix][Jx+1])))
dupchars++;
bSame = 0;
}
}
if (bSame == 0)
{
if (dupchars == bts)
{
alreadpatched++;
}
}
}
/* Are they the same? */
if (!bSame)
{
if (((alreadpatched+1) == crkLen) || (alreadpatched == crkLen))
printf("Patch has already been applied.\n");
else
printf("Incorrect version\n");
return(0);
}
/*---*/
/* Patch the Data */
/*---*/
for (Ix = 0; Ix < crkLen; Ix++)
{
/* Go to the spot */
fOffset = crkOfs[Ix];
result = fseek(fp, fOffset, SEEK_SET);
if(result)
{
printf("Error Seeking in File.(s)\n");
fclose(fp);

return(0);
}
/* Read the signature buffer */
bts = (int) crkTbl[Ix][0];
for (Jx = 0; (Jx < bts); Jx++)
{
patchbyte = (BYTE) LO(crkTbl[Ix][Jx+1]);
io_num = fputc(patchbyte, fp);
}
}

/*---*/
/* Verify the patch was successful data */
/*---*/
bSame = 1;
for (Ix = 0; Ix < crkLen; Ix++)
{
/* Go to the spot */
fOffset = crkOfs[Ix];
result = fseek(fp, fOffset, SEEK_SET);
if(result)
{
printf("Error Seeking in File.(s)\n");
fclose(fp);
return(0);
}
/* Read the patched buffer */
bts = (int) crkTbl[Ix][0];
numread = fread(inbuf, sizeof(char), bts, fp);
for (Jx = 0; Jx < bts; Jx++)
{
inchar = inbuf[Jx];
patchbyte = (BYTE) LO(crkTbl[Ix][Jx+1]);
if (patchbyte != inchar)
{
bSame = 0;
}
}
}

/* Are they the same? */
if (!bSame)
{
printf("File was not patched successfully (write protected?)\n");
return(0);
}
/* Notify Success */
printf("File was patched Successfully.\n");

/* Close the file */
fclose(fp);
/* Now return positively */
return (1);
}

